ar X iv : m at h / 03 05 33 1 v 1 [ m at h . FA ] 2 3 M ay 2 00 3 Quantitative functional calculus in

نویسندگان

  • Carlo Morosi
  • Livio Pizzocchero
چکیده

In the framework of Sobolev (Bessel potential) spaces Hn(R,R or C), we consider the nonlinear Nemytskij operator sending a function x ∈ R 7→ f(x) into a composite function x ∈ R 7→ G(f(x), x). Assuming sufficient smoothness for G, we give a ”tame” bound on the Hn norm of this composite function in terms of a linear function of the Hn norm of f , with a coefficient depending on G and on the Ha norm of f , for all integers n, a, d with a > d/2. In comparison with previous results on this subject, our bound is fully explicit, allowing to estimate quantitatively the Hn norm of the function x 7→ G(f(x), x). When applied to the case G(f(x), x) = f2(x), this bound agrees with a previous result of ours on the pointwise product of functions in Sobolev spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 03 05 16 5 v 1 1 5 M ay 2 00 3 The rise and fall of F 2 at low x

A short personal account is given of the impact of HERA data and the influence of Jan Kwiecinski on low x physics.

متن کامل

ar X iv : h ep - t h / 03 05 14 3 v 1 1 6 M ay 2 00 3 Krein structure of supersymmetry

We present supersymmetric positive definite scalar products together with natural Krein structures of supersymmetries.

متن کامل

ar X iv : h ep - t h / 03 05 16 7 v 1 2 0 M ay 2 00 3 Wavelet based regularization for Euclidean field theory ∗

It is shown that Euclidean field theory with polynomial interaction , can be regularized using the wavelet representation of the fields. The connections between wavelet based regularization and stochastic quantization are considered.

متن کامل

ar X iv : m at h / 03 05 07 6 v 1 [ m at h . G N ] 5 M ay 2 00 3 The Complex Stone – Weierstrass Property ∗

The compact Hausdorff space X has the CSWP if every subalgebra of C(X, C) which separates points and contains the constant functions is dense in C(X, C). W. Rudin showed that all scattered X have the CSWP. We describe a class of non-scattered X with the CSWP; by another result of Rudin, such X cannot be metrizable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003